Linear resolutions over Koszul complexes and Koszul homology algebras

نویسندگان

چکیده

Let R be a standard graded commutative algebra over field k , let K its Koszul complex viewed as differential -algebra, and H the homology of . This paper studies interplay between homological properties three algebras In particular, we introduce two definitions Koszulness that extend familiar property originally introduced by Priddy: one which applies to (and, more generally, any connected -algebra) other, called strand-Koszulness The main theoretical result is complete description how these are related each other. shows stronger than include examples classes have strand-Koszul.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Computing the Homology of Koszul Complexes

Let R be a commutative ring and I an ideal in R which is locally generated by a regular sequence of length d. Then, each f. g. projective R/I-module V has an Rprojective resolution P. of length d. In this paper, we compute the homology of the n-th Koszul complex associated with the homomorphism P1 → P0 for all n ≥ 1, if d = 1. This computation yields a new proof of the classical Adams-Riemann-R...

متن کامل

Koszul Algebras and Sheaves over Projective Space

We are going to show that the sheafication of graded Koszul modules KΓ over Γn = K [x0, x1...xn] form an important subcategory ∧ KΓ of the coherents sheaves on projective space, Coh(P n). One reason is that any coherent sheave over P n belongs to ∧ KΓup to shift. More importantly, the category KΓ allows a concept of almost split sequence obtained by exploiting Koszul duality between graded Kosz...

متن کامل

Linear Koszul Duality and Affine Hecke Algebras

In this paper we prove that the linear Koszul duality equivalence constructed in a previous paper provides a geometric realization of the Iwahori-Matsumoto involution of affine Hecke algebras.

متن کامل

Holomorphic Koszul-brylinski Homology

In this note, we study the Koszul-Brylinski homology of holomorphic Poisson manifolds. We show that it is isomorphic to the cohomology of a certain smooth complex Lie algebroid with values in the Evens-Lu-Weinstein duality module. As a consequence, we prove that the Evens-Lu-Weinstein pairing on Koszul-Brylinski homology is nondegenerate. Finally we compute the Koszul-Brylinski homology for Poi...

متن کامل

Koszul Duality for Modules over Lie Algebras

Let g be a reductive Lie algebra over a field of characteristic zero. Suppose that g acts on a complex of vector spaces M by iλ and Lλ, which satisfy the same identities that contraction and Lie derivative do for differential forms. Out of this data one defines the cohomology of the invariants and the equivariant cohomology of M. We establish Koszul duality between them.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Algebra

سال: 2021

ISSN: ['1090-266X', '0021-8693']

DOI: https://doi.org/10.1016/j.jalgebra.2020.12.015